8章 章末問題の解答

基礎的問題

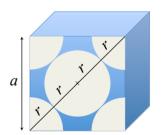
8.1 次の単位格子に含まれる原子またはイオンの数を表にまとめよ。

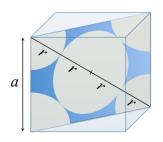
- (a) セシウム(体心立方格子)
- (e) フッ化カルシウム (CaF₂型)
- (b) 塩化セシウム (CsCl型)
- (f) ダイヤモンド (ダイヤモンド型)
- (c) アルゴン (面心立方格子)
- (g) マグネシウム (六方最密格子)
- (d) 塩化カリウム (NaCl型)
- (h) グラファイト (グラファイト型)

【解答】単位格子中に含まれる原子・イオンの種類と数を表にまとめる。

グラファイトの単位格子

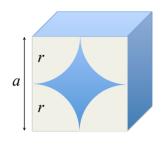
単位格子 (略記号)	化合物名	化学式	原子・イオ	ン1(個数)	原子・イオン	/ 2 (個数)
(a) 体心立方格子(bcc)	セシウム	Cs	Cs	2 個	_	
(b) CsCl型	塩化セシウム	CsCl	Cs^+	1個	Cl ⁻	1個
(c) 面心立方格子(fcc)	アルゴン	Ar	Ar	4 個	_	
(d) NaCl 型	塩化カリウム	KCl	Cs^+	4 個	Cl ⁻	4個
(e) CaF ₂ 型	フッ化カルシウム	CaF_2	Ca^{2+}	4 個	F-	8個
(f) ダイヤモンド型	ダイヤモンド	C	C	8 個	-	
(g) 六方最密格子(hcp)	マグネシウム	Mg	Mg	2 個	-	
<u>(f)</u> –	グラファイト	С	С	4 個	_	


- 8.2 3種類の立方格子の充填率を計算によって確かめよ。
- (a) 面心立方格子(立方最密充填)74%
- (b) 体心立方格子 68%
- (c) 単純立方格子 52%


【解答】

(a) 面心立方格子 (fcc) では、(100)面の対角線上で原子が接触しており、その長さが原子半径の 4 倍に相当する。格子定数(単位格子の立方体の一辺の長さ)をaとすると、(100)面の対角線の長さは $a\sqrt{2}$ なので、原子半径は $r=a\sqrt{2}/4$ である。単位格子中に 4 個の原子が含まれることを考慮し、充填率は単位格子の立方体の体積に対する原子 4 個分の体積の比で表される。

(b) 体心立方格子 (bcc) では,(110)面の対角線上で原子が接しており,その長さが原子半径の 4 倍に相当する。格子定数をaとすると,(110)面の対角線の長さは $a\sqrt{3}$ なので,原子半径は $r=a\sqrt{3}/4$ である。単位格子中に 2 個の原子が含まれるので,充填率は次の通り計算できる。



(充填率) =
$$\frac{2\left(\frac{4\pi}{3}r^3\right)}{a^3} = \frac{\frac{8\pi}{3}\left(\frac{\sqrt{3}}{4}a\right)^3}{a^3} = \frac{\sqrt{3}}{8}\pi = \frac{1.732}{8} \times 3.14 = 0.680$$

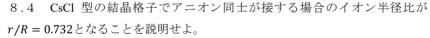
(c) 単純立方格子 (bcc) では、単位格子の立方体の辺上で原子が接しており、格子定数aの 1/2 が原子半径に相当するr=a/2。単位格子中に 1 個の原子が含まれるので、充填率は次の通り。

(充填率) =
$$\frac{\left(\frac{4\pi}{3}r^3\right)}{a^3} = \frac{\frac{4\pi}{3}\left(\frac{a}{2}\right)^3}{a^3} = \frac{\pi}{6} = \frac{3.14}{6} = 0.523$$

答 (a) 74.0% (b) 68.0% (c) 52.3%

8.3 塩化ナトリウム NaCl の格子定数は $a = 5.63 \, \text{Å}$ である。単位格子の質量と体積を求め、NaCl 結晶の密度を計算せよ。

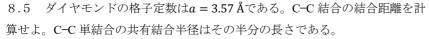
【解答】NaCl 結晶の単位格子には、Na⁺が 4 個と Cl⁻が 4 個含まれる。原子量は Na=23.0 および Cl=35.5 なので単位格子の質量wを計算すると、

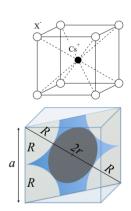

$$w = \frac{23.0 \text{ g mol}^{-1} \times 4 + 35.5 \text{ g mol}^{-1} \times 4}{6.02 \times 10^{23} \text{ mol}^{-1}} = 3.89 \times 10^{-22} \text{ g}$$

となる。この質量が単位格子の立方体の体積 a^3 の中にあるので、密度 ρ は、

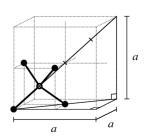
$$\rho = \frac{w}{a^3} = \frac{38.9 \times 10^{-22} \text{ g}}{(5.63 \times 10^{-8} \text{ cm})^3} = 2.18 \text{ g cm}^{-3}$$

と計算できる。


答 2.18 g cm⁻³


【解答】CsCl型の単位格子で、立方体の隅に位置するアニオンと立方体の中心に位置するカチオンが互いに接しながら、格子定数aを変えずに中心のカチオンが収縮していく状況を考えると、ある時点でアニオン同士が立方体の辺上で接することになる。アニオンの半径をR、カチオンの半径をrとすると、それらは立方体の対角線上で接しているので、 $R+2r+R=a\sqrt{3}$ が成り立つ。アニオン同士が接したときは、2R=aとなるので、これらを組み合せて、

$$2r + 2R = 2\sqrt{3}R$$
. $1 = 0.732$


と計算され、半径比はr/R = 0.732となる。

【解答】ダイヤモンド格子では面心立方格子の頂点にある炭素原子が、その四面体サイトの中心にある炭素原子と結合している。その間の距離は、(110)面の

 $a = 5.63 \,\text{Å}$

対角線の1/4の長さである。したがって、C-C 結合の距離をdとすると、 $4d = a\sqrt{3}$ の関係がある。

$$d = \frac{\sqrt{3}}{4}a = \frac{1.73}{4} \times 3.57 \text{ Å} = 1.54 \text{ Å} = 0.154 \text{ nm}$$

答 0.154 nm

発展問題

8.6 グラファイトの面を 1 層だけ取り出した物質をグラフェンと呼んでいる。厚さ 1 mm のグラファイトの単結晶から 1 秒間に 1 枚ずつグラフェンをはがしていくと、全て剥がし終わるまでにどのくらいの時間がかかるだろうか。

【解答】グラファイトの結晶でc 軸方向に積層した格子面の面間隔は0.335 nm である。厚さ 1 mm のグラファイトに含まれるグラフェンシートの枚数nは、

$$n = \frac{10^{-3} \text{ m}}{0.335 \times 10^{-9} \text{ m}} = 2.99 \times 10^{6}$$

と計算できる (300 万枚)。これを1秒間に1枚ずつ剥がしていくと、

$$\frac{2.99 \times 10^6 \text{ s}^{-1}}{(60 \times 60 \times 24) \text{ s day}^{-1}} = 34.6 \text{ days}$$

となり、ひと月以上かかることがわかる。

答 34.6 日

8.7 白金 Pt の(100)面に露出したすべての Pt 原子に一酸化炭素 CO が 1 分子 ずつ吸着したとすると、1 cm²の Pt 表面に標準状態で何 L の CO 気体が固定されたことになるか。1 cm³の Pt 固体内部のすべての Pt 原子に水素 H_2 が 1 分子 ずつ吸着した場合と比較するとどうか。

【解答】白金の金属結合半径は表 8.2 よりr=1.39 Åである。(100)面には原子が半径の 2 倍の間隔で正方形の格子にならんでいるので、S=1 cm²の面積に露出している原子の数Nは、それを一辺2rの正方形の面積で割って、

$$N = \frac{S}{(2r)^2} = \frac{1 \text{ cm}^2}{(2 \times 1.39 \times 10^{-8} \text{ cm})^2} = 1.29 \times 10^{15}$$

とわかる。理想気体の状態方程式から標準状態(25°C, 1 bar)における CO 分子の数 $N=1.29\times10^{15}$ の気体の体積Vは次の通り計算される。

$$V = \frac{Nk_BT}{P} = \frac{1.29 \times 10^{15} \times 1.381 \times 10^{-23} \text{ J K}^{-1} \times 298.15 \text{ K}}{10^5 \text{ Pa}} = 5.31 \times 10^{-11} \text{ m}^3 = 5.3 \times 10^{-8} \text{ L}$$

一方,体積 $V=1~{
m cm}^3$ 中の Pt 原子数Nは,面心立方格子の格子定数aと金属結合 半径rの関係 $a=4r/\sqrt{2}$,および単位格子中に4個の原子があることを考慮して,

$$N = \frac{4V}{\left(\frac{4r}{\sqrt{2}}\right)^3} = \frac{4 \times 1 \text{ cm}^2}{\left(\frac{4 \times 1.39 \times 10^{-8} \text{ cm}}{1.41}\right)^3} = 6.52 \times 10^{22}$$

白金の密度 ρ =21.45 g cm⁻³ と原子量M=195.1 g mol⁻¹ から 1 cm³の体積に含まれる原子の数を

$$N = \frac{\rho}{M} N_{\rm A}$$

= $\frac{21.45}{195.1} \times 6.022 \times 10^{23}$
= 6.62×10^{22}
のように計算してもよい。

である。同様に,標準状態(25°C, 1 bar)における H_2 分子の数 $N=6.52\times 10^{22}$ の気体の体積Vを求めると,

$$V = \frac{Nk_{\rm B}T}{p} = \frac{6.52 \times 10^{22} \times 1.381 \times 10^{-23} \text{ J K}^{-1} \times 298.15 \text{ K}}{10^5 \text{ Pa}} = 2.68 \times 10^{-3} \text{ m}^3$$
$$= 2.7 \text{ L}$$

となり、目に見える量の気体が吸蔵される計算となる。

答 表面吸着 5.3×10-8 L, 固体吸蔵 2.7 L

8.8 次の単体および化合物の電気抵抗率を調べ、値の低い順にならべて分類 せよ。Cu, Ag, Au, Na, K, Al, Fe, Mg, Zn, W, Pt, Hg, Bi, Si, Ge, P, C (グラファイト), SiO₂ (石英)

【解答】電気抵抗率の桁によって金属(導体),半導体,絶縁体に分類できる。

金属 電気抵抗率 (Ωm)	金属	電気抵抗率(Ωm)
Ag 銀 1.59×	10 ⁻⁸ Pt 白金	1.04×10^{-7}
Cu 銅 1.68×	10 ⁻⁸ Na ナトリ	ウム 4.77×10 ⁻⁷
Au 金 2.21×	10 ⁻⁸ Hg 水銀	9.62×10^{-7}
Alアルミニウム 2.65×	10 ⁻⁸ Bi ビスマ	7.29×10^{-6}
Mg マグネシウム 4.42×	10 ⁻⁸ <u>C グラフ:</u>	ァイト <u>1.64×10⁻⁵</u>
W $\varphi \sim \varphi \sim 5.29 \times 5.$	10-8 Ge ゲルマ	ニウム 6.90×10 ⁻¹
Zn 亜鉛 6.02×	10 ⁻⁸ <u>Si ケイ素</u>	3.97×10^{3}
Κカリウム 7.19×	10 ⁻⁸ P リン	~109
Fe 鉄 1.00×	<u>10-7</u> <u>SiO₂ 石英</u>	~10 ¹⁷